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We present a measurement of the transverse momentum distribution of Z bosons pro-
duced in pp collisions at

p
s = 1:8 TeV using data collected by the D� experiment at the

Fermilab Tevatron Collider during 1994{1996. We �nd good agreement between our data
and a current resummation calculation. We also use our data to extract values of the non-
perturbative parameters for a particular version of the resummation formalism, obtaining
signi�cantly more precise values than previous determinations.
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We report a new measurement [1,2] of the di�eren-
tial cross section with respect to transverse momen-
tum (d�=dpT ) of the Z boson in the dielectron chan-
nel with statistics and precision greatly improved
beyond previous measurements [3,4]. The measure-
ment of d�=dpT of the Z boson provides a sensi-
tive test of QCD at high-Q2. At small transverse
momentum (pT ), where the cross section is highest,
uncertainties in the phenomenology of vector boson
production have contributed signi�cantly to the un-
certainty in the mass of the W boson. Due to its
similar production characteristics and the fact that
the decay electrons can be very well-measured, the
Z provides a good laboratory for evaluating the phe-
nomenology of vector boson production.
In the parton model, Z bosons are produced in col-

lisions of qq constituents of the proton and antipro-
ton. The fact that observed Z bosons have �nite pT
can be attributed to gluon radiation from the collid-
ing partons prior to their annihilation. In standard
perturbative QCD (pQCD), the cross section for Z
boson production is calculated by expanding in pow-
ers of the strong coupling constant, �s. This proce-
dure works well when p2T � Q2 with Q =MZ . How-
ever, when pT � Q, correction terms that are pro-
portional to �s ln(Q

2=p2T ) become signi�cant, and
the cross section diverges at small pT . This diÆculty
is surmounted by reordering the perturbative series
through a technique called resummation [5{13]. Al-
though this technique extends the applicability of
pQCD to lower values of pT , a more fundamental
barrier is encountered when pT approaches �QCD.
In this region, �s becomes large and the perturba-
tive calculation is no longer valid. In order to ac-
count for the non-perturbative contribution, a phe-
nomenological form factor must be invoked, which
contains several parameters that must be tuned to
data [8,10,11].
The resummation may be carried out in impact-

parameter (b) space via a Fourier transform, or in
transverse momentum space. Both formalisms re-
quire a non-perturbative function to describe the
low-pT region beyond some cut-o� value bmax or
pTlim and they merge to the �xed-order perturba-
tion theory at pT � Q. The current state-of-the-art
for the b-space formalism resums terms to next-to-
next-to-next-to-leading-log and includes �xed-order
terms to O(�2s) [11]. Similarly, the pT -space formal-
ism resums terms to next-to-next-to-leading-log and
includes �xed-order terms to O(�s) [13].
In the b-space formalism, the resummed cross

section is modi�ed at large b (above bmax) by
exp(�SNP(b;Q

2)). The form factor SNP(b;Q
2) has

a general renormalization group invariant form, but
requires a speci�c choice of parameterization when
making predictions. A possible choice, suggested by
Ladinsky and Yuan [11], is

SNP(b;Q
2) =

g1b
2 + g2b

2 ln(Q
2

Q2
o

) + g1g3b ln(100xixj); (1)

where xi and xj are the fractions of incident hadron
momenta carried by the colliding partons and gi are
the non-perturbative parameters. An earlier param-
eterization by Davies, Webber, and Stirling [8] corre-
sponds to the above with g3 � 0. For measurements
at the Fermilab Tevatron at Q2 = M2

Z , the calcu-
lation is most sensitive to the value of g2 and quite
insensitive to the value of g3.
In the pT -space formalism, the resummed cross

section is modi�ed at low-pT (below pT lim) by mul-
tiplying the cross section by FNP(pT ). In this case,
the form of the non-perturbative function is not con-
strained by renormalization group invariance. The
choice suggested by Ellis and Veseli [13], is

~FNP(pT ) = 1� e�~ap
2

T (2)

where ~a is a non-perturbative parameter.
Previously published measurements of the di�er-

ential cross section for Z boson production have been
limited primarily by statistics (candidate samples of
a few hundred events). This measurement is based
on a sample of 6407 Z ! e+e� events, correspond-
ing to an integrated luminosity of � 111 pb�1, col-
lected with the D� detector [14] in 1994-1996. A
recent measurement by the CDF Collaboration has
a similar number of events [15].
Electrons are detected in the uranium/liquid-

argon calorimeter with a fractional energy resolution
of � 15%=

p
E(GeV). The calorimeter has a trans-

verse granularity at the electron shower maximum of
����� = 0:05� 0:05, where � is the pseudorapid-
ity and � is the azimuthal angle. The two electron
candidates in the event with the highest transverse
energy (ET ), both having ET> 25 GeV, are used
to reconstruct the Z boson candidate. One electron
is required to be in the central region, j�detj < 1:1,
and the second electron may be either in the central
or in the forward region, 1:5 < j�detj < 2:5, where
�det refers to the value of � obtained by assuming
that the shower originates from the center of the
detector. O�ine, both electrons are required to be
isolated and to satisfy cluster-shape requirements.
Additionally, at least one of the electrons is required
to have a matching track in the drift chamber system
that points to the reconstructed calorimeter cluster.
Both the acceptance and the theory predictions

modi�ed by the D� detector resolution are calcu-
lated using a simulation technique originally devel-
oped for measuring the mass of the W boson [16],
with minor modi�cations required by changes in se-
lection criteria. The four-momentum of the Z boson
is obtained by generating the mass of the Z accord-
ing to an energy-dependent Breit-Wigner lineshape.
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The pT and rapidity of the Z boson are chosen ran-
domly from two-dimensional grids created using the
computer program legacy [12], which calculates
the Z boson cross section for a given pT , rapidity,
and mass of the Z boson. The positions and energies
of the electrons are smeared according to the mea-
sured resolutions, and corrected for o�sets in energy
scale caused by the underlying event and recoil parti-
cles that overlap the calorimeter towers. Underlying
events are modeled using data from random inelastic
pp collisions of the same luminosity pro�le as the Z
boson sample. The electron energy and angular res-
olutions are tuned to reproduce the observed width
of the mass distribution at the Z-boson resonance
and the di�erence between the reconstructed vertex
positions of the electrons.
We determine the shape of the eÆciency of the

event selection criteria as a function of pT using
Z ! e+e� events generated with herwig [17],
smeared with the D� detector resolutions, and over-
laid on randomly selected zero bias pp collisions.
This simulation models the e�ects of the underly-
ing event and jet activity on the selection of the
electrons. The absolute eÆciency is obtained from
Z ! e+e� data [18]. The values of the eÆciency
times acceptance range from 26-37% for pT below
200 GeV and is 53% for pT above 200 GeV.
The primary background arises from multiple-jet

production from QCD processes in which two jets
pass the electron selection criteria. We use sev-
eral D� data sets for estimating this background|
direct- events, dijet events, and dielectron events
in which both electrons fail quality criteria|all of
which have very similar kinematic characteristics [1].
The level of the multijet background is determined
by �tting the ee invariant mass in the range 60 <
Mee < 120 GeV to a linear combination of Monte
Carlo Z ! e+e� signal events (using pythia [19])
and background (from direct- events). We assign a
systematic uncertainty to this measurement by vary-
ing the choice of mass window used in the �t, and by
changing the background sample among those men-
tioned above. We estimate the total multijet back-
ground level to be (4.4�0.9)%. The direct- sample
is used to parameterize the shape of the background
distribution as a function of pT . Backgrounds from
other sources, such as Z ! �+��, tt, and diboson
production, are negligible.
We use the data corrected for background, accep-

tance, and eÆciency, to determine the best value
of the non-perturbative parameter, g2, given our
data. In the �t, we �x g1 and g3 to the values ob-
tained in [11] and vary the value of g2. We use the
CTEQ4M pdf. The prediction is smeared with the
known detector resolutions, and the result �tted to
our data. The resulting �2 distribution as a function
of g2 is well-behaved and parabolic, yielding a value

of g2 = 0:59� 0:06 GeV2, considerably more precise
than previous determinations. For completeness, we
also �t the individual values of g1 and g3, with the
other two parameters �xed to their published val-
ues [11]. We obtain g1 = 0:09 � 0:03 GeV2 and
g3 = �1:1� 0:6 GeV�1. Both results are consistent
with the values of Ref. [11].
To determine the true d�=dpT , we correct the

measured cross section for e�ects of detector smear-
ing, using the ratio of generated to resolution-
smeared ansatz pT distributions. We use the calcula-
tion from legacy as our ansatz function, with the g2
determined from our �t. The largest smearing cor-
rection occurs at low-pT , where smearing causes the
largest fractional change in pT and where the kine-
matic boundary at pT= 0 produces non-Gaussian
smearing. The correction is 18.5% in the �rst bin,
decreasing to about 2% at 5 GeV. For all pT values
above 5 GeV, the correction is<� 5%. Systematic un-
certainties arising from the choice of ansatz function
are evaluated by varying g2 within �1 standard devi-
ation of the best-�t values. Additional uncertainties
are evaluated by varying the detector resolutions by
�1 standard deviation from the nominal values. The
e�ect of these variations is negligible relative to the
other uncertainties in the measurement.
Table I shows the values of d�(Z ! e+e�)=dpT .

The uncertainties on the data points include statis-
tical and systematic contributions. An additional
normalization uncertainty of �4.4% arises from the
uncertainty on the integrated luminosity [18] that is
not included in any of the plots nor in the table, but
must be taken into account in any �ts involving an
absolute normalization.
Figure 1 shows the �nal di�erential cross sec-

tion, corrected for the D� detector resolutions, com-
pared to the �xed-order calculation and the resum-
mation calculation with three di�erent parameter-
izations of the non-perturbative region using pub-
lished values of the non-perturbative parameters.
Also shown are the fractional di�erences of the data
from the considered resummation predictions. The
data are normalized to the measured Z ! e+e�

cross section (221 pb [18]) and the predictions are
absolutely normalized. We observe the best agree-
ment with the Ladinsky-Yuan parameters for the
b-space formalism; however, we expect that �ts to
the data using the Davies-Weber-Stirling (b-space)
or Ellis-Veseli (pT -space) parameterizations of the
non-perturbative functions could describe the data
similarly well.
Figure 2 shows the measured di�erential cross sec-

tion compared to the �xed-order calculation and the
resummation calculation using the Ladinsky-Yuan
parameterization. We observe strong disagreement
between the data and the �xed-order prediction in
the shape for all but the highest values of pT . We at-
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pT range nominal pT number d�(Z ! e+e�)=dpT
(GeV) value (GeV) of events (pb/GeV)

0{1 0.6 156 6.04�0.53
1{2 1.5 424 16.2�0.96
2{3 2.5 559 20.4�1.1
3{4 3.5 572 19.7�1.1
4{5 4.5 501 16.2�0.92
5{6 5.5 473 15.0�0.87
6{7 6.5 440 14.1�0.84
7{8 7.5 346 11.1�0.73
8{9 8.5 312 10.0�0.69
9{10 9.5 285 9.29�0.67
10{12 11.0 439 7.25�0.54
12{14 13.0 326 5.45�0.44
14{16 15.0 258 4.45�0.39
16{18 17.0 203 3.54�0.33
18{20 19.0 181 3.21�0.31
20{25 22.3 287 2.06�0.18
25{30 27.3 174 1.29�0.13
30{35 32.3 124 0.962�0.11
35{40 37.4 104 0.840�0.10
40{50 44.5 92 0.373�0.045
50{60 54.5 61 0.251�0.036
60{70 64.5 40 0.163�0.027
70{85 76.6 20 0.053�0.012
85{100 91.7 13 0.034�0.009
100{200 135 15 0.0050�0.0013
200{300 228 2 0.0004+0:0004

�0:0003

TABLE I. Summary of the results of the measurement
of the pT distribution of the Z boson. The range of pT
corresponds to the intervals used for binning the data.
The nominal pT corresponds to the value of pT used to
plot the data and was obtained from theory. The quan-
tity d�(Z ! e+e�)=dpT corresponds to the di�erential
cross section in each bin of pT for Z ! e+e� produc-
tion. The uncertainty on the di�erential cross section
includes both systematic and statistical uncertatinties,
but does not include overall normalization uncertainty
due to the luminosity of �4:4%.

tribute this to the divergence of the next-to-leading-
order calculation at pT= 0, and a signi�cant en-
hancement of the cross section relative to the pre-
diction at moderate values of pT . This disagree-
ment con�rms the presence of contributions from
soft gluon emission, which are accounted for in the
resummation formalisms.
In summary, we have measured the inclusive dif-

ferential cross section of the Z boson as a function
of its transverse momentum. With the enhanced
precision of this measurement over those previous,
we can probe non-perturbative, resummation, and
�xed-order QCD e�ects. We observe good agree-
ment between the b-space resummation calculation
using the published values of the non-perturbative
parameters from Ladinsky-Yuan and the measure-

ment for all values of pT . Using their parameter-
ization for the non-perturbative region, we obtain
g2 = 0:59� 0:06 GeV2.
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FIG. 1. The di�erential cross section as a func-
tion of pT compared to the resummation calculation
with three di�erent published parameterizations of the
non-perturbative region and to the �xed-order calcula-
tion. Also shown are the fractional di�erences between
the data and each of the resummation predictions.
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FIG. 2. A comparison of the data to the resummed
and �xed-order (O(�2s)) calculations. Also shown are
the fractional di�erences between the data and the re-
summed and �xed-order calculations. The uncertainties
shown include both statistical and systematic uncertain-
ties (other than an overall normalization uncertainty due
to the luminosity uncertainty).


